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On this presentation we will see

c- |
e \What Selfish Routing is about,

e Flows at Equilibrium and Optimal flows,

e Social welfare and the Price of Anarchy
(PoA),

e Bounds on the PoA and
e How to reduce the PoA by taxing the edges




Pigou’s Network
S

c(x)=x
© ()

There is a source node s and a target node t.

One unit of flow is to be routed from s to t, using the upper and the
lower edge. This unit of flow corresponds to infinetely many,
Infinitesimal players.

e The lower edge costs constantly 1 to each player that uses her.

e The upper edge’s latency for each player on her is equal to the
fraction of the players using her.
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Braess’ Paradox’s Network

e One unit of flow Is to be routed from s to t.
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Braess’ Paradox’s Network

e One unit of flow Is to be routed from s to t.

e The optimal routing routes half of the flow through
the upper path and half of the flow through the lower
path

e Players prefer the “upper-lower” path



The Mathematical Model
«__ 0

e adirected graph
e k source-destination pairs
e a rate (amount) r. of traffic from < to
e for each edge ¢, a cost function
- assumed nonnegative, continuous, nondecreasing

The strategies of players with source destination pair are all
the paths joining < and 1.



Example

r1 = re = rz = 1 and for all the edges of the network c.(z) = x



Flows
«_«__ 00077

Let P, = {p|p is a simple s; — t; path} and P = P;

A flow is a function f: P — R, (imagine it as a vector)
A flow is feasible if > cp, fr =i
Edge decomposition of flow: Jfe = Zpep:eep fv

Each player on path p pays ¢,(f) = Y., ce(fe)

The flow’s total costis C(f) = > cp () fp = Dccp fece(fe)



Example

r1 = re = rz = 1 and for all the edges of the network c.(z) = x



Wardrop Equilibrium (Nash flow)
-

A feasible flow is a Wardrop equilibrium if for
every commodity / :

\V/p,QGPi,fp>OZCp(f) ch(f)

Intuitively, no player has incentive to deviate

Moreover:Vp,q € P; : f, >0, fg > 0= cp(f) = cq(f)



Existence and Uniqueness
S

Let O(f) =3 ,cp [ coln)da
Assume fis an equilibrium flow.

Change fto a feasible flow f’ that differs with fin only two
paths (p, gq) of the same commodity: f, = f, =90, fi; = fo+9

B(f) = B(f) = Socpin JIF jf@c)dx ~ Yeepig JiF ce(z)dz

(f) = 2(f) = Yeegp S5 (@ = ey [ _gee(x)da

for 6 — 0:

(1)~ B(f) & Toegp 0e(f2) = Seepqdcelfe) = 8leg(f) — cp(f)) 2 0



Existence and Uniqueness
S

Consider the convex program CP:

min (f) := ZGEE fo * co(z)dz
so that

ZPEPi fp=ri,Vie{l... k}
fe= ZPEP:€Ep fp,Vee &

fp > O,Vp c P

By Karush-Kuhn-Tucker optimality conditions:
A feasible flow f is optimal for CP cp(f) < eqo(f)

I} KA

B = Yo, JJe ce(@)dz) < Sy e co(@)da) = B,
Vie{l...k},Vp,q€ P;, f, >0



Optimal Flow
S

A feasible flow f* is optimal if for every feasible flow x:

C(f) <C) (O = Leep feeel£2)

Once again; min ) cpce(fe)/fe
so that

D pep, Jp=Ti, Vi €{1...k}
fe — ZPEP:eEP fpave ck
fp > O,Vp c P
By KKT conditions
F= optimal & ¢(f*) + Yee, L(FF2 < eq(f7) + Leeq LI,

Vie{l...k},Vp,q€ P;, f, >0




Price of Anarchy (PoA)

A measure for the inefficiency of the network:
p(G,r,c) = PoA := C((ff ) f an equilibrium flow and f* an optimal flow

Example: Optimal flow (OPT) and Equilir'ium flow (WE)

Flow = 3 C(X)=X C(X)=X_ Flow = 1
Q c(x)= E) Q c(x)= 3)
Flow = Flow =0



Variational Inequality
S

Variational inequality:
f Wardrop equilibrium < ) g ce(fe)fe < D ocpCe(fe)f2,Vf* feasible

e The < part: consider f* differing from fin two “same commodity”
paths by >0 units (for all commodities).

S celfolfe £ 3 clffs = D celf) (fom(Fem0)) < D celfe) ((fet0)— 1)

eck eck ecp ecq

e The = part: same commodity “nonzero” paths are the cheapest
of the commodity / and cost equal (say c¢,(f)). Thus

D afe=)_al)D =) DD =1 > i< olfy

v peEPR; ( PEP; ( pPEP; v peEPR; pEP

S el fo <Y )i =D celfe)fe <Y clfe)f:

peP peP ecE eckE



Bounding the PoA
-

Let f be an equilibrium flow and f* an optimal:
C(f) = celf)fe < 3 celfelfi = (celfod fi + el — el FVF2) =

C(f) <D celffr+) (celfe)—ce(f)) f2=CUf)+ Y (celfe)—ce(f2)) I

We bound the last term:

72 (ecf)—ecl£)) < vlferce) fecelfe), v(uree) = —

mmawaO{x(ce (u)—ce(z))}

Let v(ce) = sup,>ov(u,ce) and v(D) = sup,._v(c.) where D
IS the family of the cost functions. We get

S (eelfe) — el ) 2 <v(D) Y eelfife = Cf) < — iw) O

eckE eck




Tightness
-

Assume that u units are to Flow = K c(x)
be routed from s to t.

At WE everybody goes up Flow = U=
OPT minimizes: kc(k) + (v — k)c(u) c(u)

_ uc(u) e (g SR N o) — e(k) )y
o = e 0w (@ — R(a) T Re(®)] i) (a k)+kuc(u)> ! e k(= )

Previous slide:  Poa<(1- suwp max{a:@e(u)—ce(m))})_l

ce€Du>0 20 uce(u)




Special cases
S

e For linear latency functions: v(D) = § and PoA <
e For polynomial of degree d latency functions:

—1
0(D) = ey and PoA < (1— (pyieeyr

QO |~

1 unit is to be routed. Flow = k c(x)
At WE everybody goes up
For c¢(z) = % OPT minimizes:

kkd+(1—k) Flow = 1-

c(1)
d

. L L . .
Itis Ic_fl/d+1 and OPT =1 <d+1)d+1/d




Braess’ Paradox
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Braess’ Paradox

WE and OPT in the original network
Removing the "middle” edge:

OPT and WE in the
subnetwork

A=l x 2 1

1] 7, X

1
2
Is it possible to detect the Braess' Paradox?



Reducing the PoA
S

The PoA can (could) be reduced:

- by detecting and excluding the Braess’ Paradox (next
time)

— by controlling a fraction of cooperative players
(Stackelberg strategies, next time)

- by Taxing the edges of the network (today)

- with Coordination Mechanisms (or changing the rules
of the game)
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Tolls
« /0007

Our scope is to set tolls that “transform” the system optimum to an
equilibrium

Tolls are set on the edges: edge egets a1,

Player using path p gets a delay cost ¢,(f) = Z ce(fe) and hasto
pay 7, = T. as tolls. e€p
ecp

Player i has a sensitivity a; to latency. Her total cost is a;l,(f) + 7

Social Cost is not affected



A “magic” LP program
-

Assume g is a (feasible) congestion that we want to enforce.
Consider the following LP and its Dual:

minimize Y, a; Y. cp ¢p(9)f; maximize Y . diz — ) .cg ete
so that so that
Vee E: Y3 cpecpfi<ge (1) YiVpEPi: zi—) .cpte < aicp(g)
Vi: ) ep. fi=d; (2) VeeE: t.>0
vivp e Py: fi>0 (3)

(feasible) g is minimal if inequality 1 is tight

g is enforceable if there are tolls to enforce it on equilibrium.



The Theorem
« /0007

Theorem: g minimal < g enforceable
Proof:

e = :there is a an optimal solution f, with a
complementary optimal solution (f,z), for which 1 is
tight : fe > 0= 2 = aicp(g) + D cepte

minimize Y, a; Y. cp ¢(9)f; maximize Y., dizi — Y. .cp ele
so that so that
Ve€ E: 3.0 cpeepfo <ge (1) ViVpe it zi— D eep e S aicp(g)
Vii S ,op fi=d; (2) Vee€E: t,>0

Vivp € P: fi>0 (3)



The Theorem
« /0007

Theorem: g minimal < g enforceable
Proof:

e <: consider eq. flow fand tolls r.. f is an equilibrium:

fé > 0= z; = Clz'Cp(g) + Zeep Te = CONSt
fand (1,z) are complementary (and feasible) and so
they are both optimal.

minimize Y, a; Y. cp ¢(9)f; maximize Y., dizi — Y. .cp ele
so that so that
Ve€ E: 3.3 cpeepfo <ge (1) ViVpe it zi— D eep e S aicp(g)
Vii S op fi=d; (2) Ve€E: t,>0

Vivp € P: fi>0 (3)



A minimal and optimal g? Where?
-

g is called minimally feasible if:
— itis feasible and
- reducing any g, (for any e) results to infeasibility
A minimally feasible g has optimal solutions for which 1 is tight

Let g be the optimal congestion, the one that we want to enforce.
Reduce the g,’s, stopping whenever feasibility “stops”

g* is minimally feasible + optimal (Z ce(g™)g. < Z Ce(9)ge )

e



Thank you!
(and Roughgarden)



	Selfish Routing �and/or� Non-atomic Congestion Games
	On this presentation we will see
	Pigou’s Network
	Pigou’s Network
	Pigou’s Network
	Braess’ Paradox’s Network
	Braess’ Paradox’s Network
	Braess’ Paradox’s Network
	The Mathematical Model
	Example
	Flows
	Example
	Wardrop Equilibrium (Nash flow)
	Existence and Uniqueness
	Existence and Uniqueness
	Optimal Flow
	Price of Anarchy (PoA)
	Variational Inequality
	Bounding the PoA
	Tightness
	Special cases
	Braess’ Paradox
	Braess’ Paradox
	Braess’ Paradox
	Braess’ Paradox
	Braess’ Paradox
	Braess’ Paradox
	Reducing the PoA
	Reducing the PoA
	Tolls
	A “magic” LP program
	The Theorem
	The Theorem
	A minimal and optimal g? Where? 

