Selfish Routing and/or Non-atomic Congestion Games

Algorithmic Game Theory Course Co.Re.Lab. - N.T.U.A.

On this presentation we will see

- What Selfish Routing is about,
- Flows at Equilibrium and Optimal flows,
- Social welfare and the Price of Anarchy (PoA),
- Bounds on the PoA and
- How to reduce the PoA by taxing the edges

Pigou's Network

There is a source node **s** and a target node **t**.

- One unit of flow is to be routed from s to t, using the upper and the lower edge. This unit of flow corresponds to *infinetely many, infinitesimal players*.
- The lower edge costs constantly 1 to each player that uses her.
- The upper edge's latency for each player on her is equal to the fraction of the players using her.

Pigou's Network

There is a source node **s** and a target node **t**.

- One unit of flow is to be routed from s to t, using the upper and the lower edge. This unit of flow corresponds to *infinetely many, infinitesimal players*.
- The lower edge costs constantly 1 to each player that uses her.
- The upper edge's latency for each player on her is equal to the fraction of the players using her.

Pigou's Network

There is a source node **s** and a target node **t**.

- One unit of flow is to be routed from s to t, using the upper and the lower edge. This unit of flow corresponds to *infinetely many, infinitesimal players*.
- The lower edge costs constantly 1 to each player that uses her.
- The upper edge's latency for each player on her is equal to the fraction of the players using her.

Braess' Paradox's Network

• One unit of flow is to be routed from s to t.

Braess' Paradox's Network

- One unit of flow is to be routed from s to t.
- The optimal routing routes half of the flow through the upper path and half of the flow through the lower path

Braess' Paradox's Network

- One unit of flow is to be routed from s to t.
- The optimal routing routes half of the flow through the upper path and half of the flow through the lower path
- Players prefer the "upper-lower" path

The Mathematical Model

- a directed graph G = (V,E)
- k source-destination pairs (s₁,t₁), ..., (s_k,t_k)
- a rate (amount) r_i of traffic from s_i to t_i
- for each edge e, a cost function $c_e(\bullet)$
 - assumed nonnegative, continuous, nondecreasing

The strategies of players with source destination pair (s_i, t_i) are all the paths joining s_i and t_i .

Example

 $r_1 = r_2 = r_3 = 1$ and for all the edges of the network $c_e(x) = x$

Flows

Let
$$P_i = \{p | p \text{ is a simple } s_i - t_i \text{ path} \}$$
 and $P = \bigcup P_i$

A flow is a function $f: P \to \Re_+$ (imagine it as a vector)

A flow is feasible if $\sum_{p \in P_i} f_p = r_i$

Edge decomposition of flow: $f_e = \sum_{p \in P: e \in p} f_p$

Each player on path *p* pays $c_p(f) = \sum_{e \in p} c_e(f_e)$

The flow's total cost is $C(f) = \sum_{p \in P} c_p(f) f_p = \sum_{e \in E} f_e c_e(f_e)$

Example

 $r_1 = r_2 = r_3 = 1$ and for all the edges of the network $c_e(x) = x$

Wardrop Equilibrium (Nash flow)

A feasible flow is a Wardrop equilibrium if for every commodity *i* :

$$\forall p, q \in P_i, f_p > 0 : c_p(f) \le c_q(f)$$

Intuitively, no player has incentive to deviate

Moreover: $\forall p, q \in P_i : f_p > 0, f_q > 0 \Rightarrow c_p(f) = c_q(f)$

Existence and Uniqueness

Let $\Phi(f) := \sum_{e \in E} \int_0^{f_e} c_e(x) dx$ Assume *f* is an equilibrium flow.

 $|\Phi|$

Change *f* to a feasible flow *f*' that differs with *f* in only two paths (p, q) of the same commodity: $f'_p = f_p - \delta$, $f'_q = f_q + \delta$

Existence and Uniqueness

Consider the convex program CP:

min
$$\Phi(f) := \sum_{e \in E} \int_0^{f_e} c_e(x) dx$$

so that
 $\sum_{p \in P_i} f_p = r_i, \forall i \in \{1 \dots k\}$
 $f_e = \sum_{p \in P: e \in p} f_p, \forall e \in E$
 $f_p \ge 0, \forall p \in P$

By Karush-Kuhn-Tucker optimality conditions:

Optimal Flow

A feasible flow f^* is optimal if for every feasible flow x: $C(f^*) \le C(x)$ $\left(C(f) = \sum_{e \in E} f_e c_e(f_e)\right)$

Once again:
$$\min \sum_{e \in E} c_e(f_e) f_e$$

so that
 $\sum_{p \in P_i} f_p = r_i, \forall i \in \{1 \dots k\}$
 $f_e = \sum_{p \in P: e \in p} f_p, \forall e \in E$
 $f_p \ge 0, \forall p \in P$

By KKT conditions f^* optimal $\Leftrightarrow c_p(f^*) + \sum_{e \in p} c'_e(f^*_e) f^*_e \leq c_q(f^*) + \sum_{e \in q} c'_e(f^*_e) f^*_e$,

 $\forall i \in \{1 \dots k\}, \forall p, q \in P_i, f_p > 0$

Price of Anarchy (PoA)

A measure for the inefficiency of the network: $\rho(G, r, c) = PoA := \frac{C(f)}{C(f^*)}$, f an equilibrium flow and f^* an optimal flow

Example: Optimal flow (OPT) and Equilirium flow (WE) Flow = $\frac{1}{2}$ c(x)=x s c(x)=1 Flow = $\frac{1}{2}$ Flow = $\frac{1}{2}$ Flow = 0

$$C(f^*) = (\frac{1}{2}) \cdot (\frac{1}{2}) + \frac{1}{2} \cdot 1 = \frac{3}{4}, C(f) = 1 \text{ and } PoA = \frac{C(f)}{C(f^*)} = \frac{4}{3}$$

Variational Inequality

Variational inequality:

f Wardrop equilibrium $\Leftrightarrow \sum_{e \in E} c_e(f_e) f_e \leq \sum_{e \in E} c_e(f_e) f_e^*, \forall f^*$ feasible

• The \Leftarrow part: consider *f** differing from *f* in two "same commodity" paths by $\delta > 0$ units (for all commodities).

$$\sum_{e \in E} c_e(f_e) f_e \le \sum_{e \in E} c_e(f_e) f_e^* \Rightarrow \sum_{e \in p} c_e(f_e) \Big(f_e - (f_e - \delta) \Big) \le \sum_{e \in q} c_e(f_e) \Big((f_e + \delta) - f_e \Big) \Big) = \sum_{e \in E} c_e(f_e) \Big(f_e - (f_e - \delta) \Big) = \sum_{e \in E} c$$

 The ⇒ part: same commodity "nonzero" paths are the cheapest of the commodity *i* and cost equal (say c_i(f)). Thus

$$\sum_{i} \sum_{p \in P_i} c_p(f) f_p = \sum_{i} c_i(f) \sum_{p \in P_i} f_p = \sum_{i} c_i(f) \sum_{p \in P_i} f_p^* = \sum_{i} \sum_{p \in P_i} c_i(f) f_p^* \le \sum_{p \in P} c_p(f) f_p^*$$
$$\sum_{p \in P} c_p(f) f_p \le \sum_{p \in P} c_p(f) f_p^* \Rightarrow \sum_{e \in E} c_e(f_e) f_e \le \sum_{e \in E} c_e(f_e) f_e^*$$

Bounding the PoA

Let f be an equilibrium flow and f^* an optimal:

$$C(f) = \sum_{e \in E} c_e(f_e) f_e \le \sum_{e \in E} c_e(f_e) f_e^* = \sum_{e \in E} \left(c_e(f_e) f_e^* + c_e(f_e^*) f_e^* - c_e(f_e^*) f_e^* \right) \Rightarrow$$

$$C(f) \le \sum_{e \in E} c_e(f_e^*) f_e^* + \sum_{e \in E} \left(c_e(f_e) - c_e(f_e^*) \right) f_e^* = C(f^*) + \sum_{e \in E} \left(c_e(f_e) - c_e(f_e^*) \right) f_e^*$$

We bound the last term: $f_e^*(c_e(f_e) - c_e(f_e^*)) \le v(f_e, c_e) f_e c_e(f_e), \quad v(u, c_e) = \frac{1}{u c_e(u)} max_{x \ge 0} \{x(c_e(u) - c_e(x))\}$

Let $v(c_e) = \sup_{u \ge 0} v(u, c_e)$ and $v(D) = \sup_{c_e} v(c_e)$ where D is the family of the cost functions. We get

$$\sum_{e \in E} \left(c_e(f_e) - c_e(f_e^*) \right) f_e^* \le v(D) \sum_{e \in E} c_e(f_e) f_e \Rightarrow C(f) \le \frac{1}{1 - v(D)} C(f^*)$$

Tightness

Assume that *u* units are to be routed from *s* to *t*.

At WE everybody goes up OPT minimizes: kc(k) + (u - k)c(u)

$$PoA = \frac{uc(u)}{\min_{k \in [0,v]} \left[(u-k)c(u) + kc(k) \right]} = \max_{k \in [0,v]} \left((1-k) + k\frac{c(k)}{uc(u)} \right)^{-1} = \left[1 - \max_{k \in [0,v]} k \left(\frac{c(u) - c(k)}{uc(u)} \right) \right]^{-1}$$

Previous slide:
$$PoA \le \left(1 - \sup_{c_e \in D, u \ge 0} \max_{x \ge 0} \frac{\{x(c_e(u) - c_e(x))\}}{uc_e(u)}\right)^{-1}$$

Special cases

- For linear latency functions: $v(D) = \frac{1}{4}$ and $PoA \le \frac{4}{3}$
- For polynomial of degree *d* latency functions:

$$v(D) = \frac{d}{(d+1)^{(d+1)/d}}$$
 and $PoA \le \left(1 - \frac{d}{(d+1)^{(d+1)/d}}\right)^{-1}$

1 unit is to be routed.
At WE everybody goes up
For
$$c(x) = x^d$$
 OPT minimizes:
 $k \cdot k^d + (1 - k)$

Reducing the PoA

The PoA can (could) be reduced:

- by detecting and excluding the Braess' Paradox (next time)
- by controlling a fraction of cooperative players (Stackelberg strategies, next time)
- by Taxing the edges of the network (today)
- with Coordination Mechanisms (or changing the rules of the game)

Reducing the PoA

The PoA can (could) be reduced:

- by detecting and excluding the Braess' Paradox (next time)
- by controlling a fraction of cooperative players (Stackelberg strategies, next time)
- by Taxing the edges of the network (today)
- with Coordination Mechanisms (or changing the rules of the game)

Tolls

Our scope is to set tolls that "transform" the system optimum to an equilibrium

Tolls are set on the edges: edge e gets a τ_e

Player using path *p* gets a delay cost $c_p(f) = \sum_{e \in p} c_e(f_e)$ and has to pay $\tau_p = \sum_{e \in p} \tau_e$ as tolls.

Player *i* has a sensitivity α_i to latency. Her total cost is $a_i l_p(f) + \tau_p$

Social Cost is not affected

A "magic" LP program

Assume g is a (feasible) congestion that we want to enforce. Consider the following LP and its Dual:

 $\begin{array}{lll} \text{minimize} & \sum_{i} a_{i} \sum_{p \in P_{i}} c_{p}(g) f_{p}^{i} & \text{maximize} & \sum_{i} d_{i} z_{i} - \sum_{e \in E} g_{e} t_{e} \\ \text{so that} & \text{so that} \\ \forall e \in E : & \sum_{i} \sum_{p \in P: e \in p} f_{p}^{i} \leq g_{e} & (1) \quad \forall i \forall p \in P_{i} : & z_{i} - \sum_{e \in p} t_{e} \leq a_{i} c_{p}(g) & (i) \\ \forall i : & \sum_{p \in P_{i}} f_{p}^{i} = d_{i} & (2) \quad \forall e \in E : & t_{e} \geq 0 \end{array}$ (ii) $\forall i \forall p \in P_{i} : & f_{p}^{i} \geq 0 & (3) \end{array}$

(feasible) g is minimal if inequality 1 is tight

g is enforceable if there are tolls to enforce it on equilibrium.

The Theorem

Theorem: $g minimal \Leftrightarrow g enforceable$ Proof:

• \Rightarrow : there is a an optimal solution *f*, with a complementary optimal solution (*t*,*z*), for which 1 is tight : $f_e^i > 0 \Rightarrow z_i = a_i c_p(g) + \sum_{e \in p} t_e$

 $\begin{array}{lll} \text{minimize} & \sum_{i} a_{i} \sum_{p \in P_{i}} c_{p}(g) f_{p}^{i} & \text{maximize} & \sum_{i} d_{i} z_{i} - \sum_{e \in E} g_{e} t_{e} \\ \text{so that} & \text{so that} \\ \forall e \in E : & \sum_{i} \sum_{p \in P: e \in p} f_{p}^{i} \leq g_{e} & (1) & \forall i \forall p \in P_{i} : & z_{i} - \sum_{e \in p} t_{e} \leq a_{i} c_{p}(g) & (i) \\ \forall i : & \sum_{p \in P_{i}} f_{p}^{i} = d_{i} & (2) & \forall e \in E : & t_{e} \geq 0 \\ \forall i \forall p \in P_{i} : & f_{p}^{i} \geq 0 & (3) \end{array}$

The Theorem

Theorem: g minimal \Leftrightarrow g enforceable **Proof**:

• \leftarrow : consider eq. flow f and tolls τ_{ϵ} . f is an equilibrium: $f_e^i > 0 \Rightarrow z_i := a_i c_p(g) + \sum_{e \in p} \tau_e \equiv const$ f and (*t*,*z*) are **complementary** (and feasible) and so they are both **optimal**.

minimize $\sum_{i} a_i \sum_{p \in P_i} c_p(g) f_p^i$ so that $\forall i: \sum_{p \in P_i} f_p^i = d_i$ $\forall i \forall p \in P_i: f_n^i \geq 0$ (3)

maximize $\sum_{i} d_i z_i - \sum_{e \in E} g_e t_e$ so that $\forall e \in E: \quad \sum_{i} \sum_{p \in P: e \in p} f_p^i \le g_e \quad (1) \quad \forall i \forall p \in P_i: \quad z_i - \sum_{e \in p} t_e \le a_i c_p(g) \quad (i)$ $(2) \qquad \forall e \in E: \quad t_e \ge 0$ (ii)

A minimal and optimal g? Where?

g is called minimally feasible if:

- it is feasible and
- reducing any g_e (for any e) results to infeasibility

A minimally feasible g has optimal solutions for which 1 is tight

Let g be the optimal congestion, the one that we want to enforce. <u>Reduce the g_e 's, stopping whenever feasibility "stops"</u>

$$g^*$$
 is minimally feasible + optimal ($\sum_e c_e(g^*)g_e^* \leq \sum_e c_e(g)g_e$)

Thank you! (and Roughgarden)