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On this presentation we will see

What Selfish Routing is about,
Flows at Equilibrium and Optimal flows, 
Social welfare and the Price of Anarchy 
(PoA),
Bounds on the PoA and
How to reduce the PoA by taxing the edges



Pigou’s Network

There is a source node s and a target node t.

One unit of flow is to be routed from s to t, using the upper and the 
lower edge. This unit of flow corresponds to infinetely many, 
infinitesimal players.
The lower edge costs constantly 1 to each player that uses her.
The upper edge’s latency for each player on her is equal to the 
fraction of the players using her.
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There is a source node s and a target node t.

One unit of flow is to be routed from s to t, using the upper and the 
lower edge. This unit of flow corresponds to infinetely many, 
infinitesimal players.
The lower edge costs constantly 1 to each player that uses her.
The upper edge’s latency for each player on her is equal to the 
fraction of the players using her.



Pigou’s Network
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c(x)=x Flow = 1

Flow = 0
c(x)=1

There is a source node s and a target node t.

One unit of flow is to be routed from s to t, using the upper and the 
lower edge. This unit of flow corresponds to infinetely many, 
infinitesimal players.
The lower edge costs constantly 1 to each player that uses her.
The upper edge’s latency for each player on her is equal to the 
fraction of the players using her.



Braess’ Paradox’s Network

One unit of flow is to be routed from s to t.
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Braess’ Paradox’s Network

One unit of flow is to be routed from s to t.
The optimal routing routes half of the flow through 
the upper path and half of the flow through the lower 
path
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Braess’ Paradox’s Network

One unit of flow is to be routed from s to t.
The optimal routing routes half of the flow through 
the upper path and half of the flow through the lower 
path
Players prefer the “upper-lower” path
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The Mathematical Model

a directed graph G = (V,E)
k source-destination pairs (s1 ,t1), …, (sk ,tk)
a rate (amount) ri of traffic from si to ti
for each edge e, a cost function ce(•)

– assumed nonnegative, continuous, nondecreasing

The strategies of players with source destination pair (si ,ti) are all 
the paths joining si and ti.



Example

s1
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r1 = r2 = r3 = 1 and for all the edges of the network ce(x) = x



Flows

Let

A flow is a function                       (imagine it as a vector)  

A flow is feasible if

Edge decomposition of flow:

Each player on path p pays

The flow’s total cost is

Pi = {p|p is a simple si − ti path} and P =
S
Pi

f : P → <+P
p∈Pi fp = ri

fe =
P

p∈P :e∈p fp

cp(f) =
P

e∈p ce(fe)

C(f) =
P

p∈P cp(f)fp =
P

e∈E fece(fe)



Example

r1 = r2 = r3 = 1 and for all the edges of the network ce(x) = x
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Wardrop Equilibrium (Nash flow)

A feasible flow is a Wardrop equilibrium if for 
every commodity i :                                                 

Intuitively, no player has incentive to deviate

Moreover:

∀p, q ∈ Pi, fp > 0 : cp(f) ≤ cq(f)

∀p, q ∈ Pi : fp > 0, fq > 0⇒ cp(f) = cq(f)



Existence and Uniqueness

Let
Assume f is an equilibrium flow. 
Change f to a feasible flow f’ that differs with f in only two 

paths (p, q) of the same commodity:

Φ(f) :=
P

e∈E
R fe
0 ce(x)dx

f 0p = fp − δ, f 0q = fq + δ

Φ(f 0)− Φ(f) =Pe∈p∪q
R f 0e
0
ce(x)dx−

P
e∈p∪q

R fe
0
ce(x)dx

⇓
Φ(f 0)− Φ(f) =Pe∈q−p

R fe+δ
fe

ce(x)dx−
P

e∈p−q
R fe
fe−δ ce(x)dx⇓

for δ → 0 :
Φ(f 0)− Φ(f) ≈Pe∈q−p δce(f

0
e)−

P
e∈p−q δce(fe) = δ(cq(f

0)− cp(f)) ≥ 0



Existence and Uniqueness

Consider the convex program CP:

By Karush-Kuhn-Tucker optimality conditions:

min Φ(f) :=
P

e∈E
R fe
0
ce(x)dx

so thatP
p∈Pi fp = ri, ∀i ∈ {1 . . . k}

fe =
P

p∈P :e∈p fp, ∀e ∈ E
fp ≥ 0, ∀p ∈ P

A feasible flow f is optimal for CP
m

h0p :=
P

e∈p(
R fe
0
ce(x)dx)

0 ≤Pe∈q(
R fe
0
ce(x)dx)

0 = h0q,
∀i ∈ {1 . . . k}, ∀p, q ∈ Pi, fp > 0

m cp(f) ≤ cq(f)



Optimal Flow

A feasible flow f* is optimal if for every feasible flow x: 

Once again:

By KKT conditions

C(f∗) ≤ C(x)
³
C(f) =

P
e∈E fece(fe)

´
min

P
e∈E ce(fe)fe

so thatP
p∈Pi fp = ri, ∀i ∈ {1 . . . k}

fe =
P

p∈P :e∈p fp, ∀e ∈ E
fp ≥ 0, ∀p ∈ P

f∗ optimal ⇔ cp(f
∗) +

P
e∈p c

0
e(f

∗
e )f

∗
e ≤ cq(f∗) +

P
e∈q c

0
e(f

∗
e )f

∗
e ,

∀i ∈ {1 . . . k}, ∀p, q ∈ Pi, fp > 0



Price of Anarchy (PoA)

A measure for the inefficiency of the network:

Example:

ρ(G, r, c) = PoA := C(f)
C(f∗) , f an equilibrium flow and f∗ an optimal flow

s t

c(x)=xFlow = ½

Flow = ½
c(x)=1

s t

c(x)=x Flow = 1

Flow = 0
c(x)=1

C(f∗) = ( 12 ) · ( 12 ) + 1
2 · 1 = 3

4 , C(f) = 1 and PoA =
C(f)
C(f∗) =

4
3

Optimal flow (OPT) and Equilirium flow (WE) 



Variational Inequality

Variational inequality:

The      part: consider f* differing from f in two “same commodity”
paths by δ>0 units (for all commodities).

The      part: same commodity “nonzero” paths are the cheapest 
of the commodity i and cost equal (say ci(f)). Thus

f Wardrop equilibrium ⇔P
e∈E ce(fe)fe ≤

P
e∈E ce(fe)f

∗
e , ∀f∗ feasible

X
p∈P

cp(f)fp ≤
X
p∈P

cp(f)f
∗
p ⇒

X
e∈E

ce(fe)fe ≤
X
e∈E

ce(fe)f
∗
e

⇐

⇒

X
e∈E

ce(fe)fe ≤
X
e∈E

ce(fe)f
∗
e ⇒

X
e∈p

ce(fe)
³
fe−(fe−δ)

´
≤
X
e∈q

ce(fe)
³
(fe+δ)−fe

´

X
i

X
p∈Pi

cp(f)fp =
X
i

ci(f)
X
p∈Pi

fp =
X
i

ci(f)
X
p∈Pi

f∗p =
X
i

X
p∈Pi

ci(f)f
∗
p ≤

X
p∈P

cp(f)f
∗
p



Bounding the PoA

Let f be an equilibrium flow and f* an optimal: 

We bound the last term:

Let                                                             where D 
is the family of the cost functions. We get

C(f) =
X
e∈E

ce(fe)fe ≤
X
e∈E

ce(fe)f
∗
e =

X
e∈E

³
ce(fe)f

∗
e + ce(f

∗
e )f

∗
e − ce(f∗e )f∗e

´
⇒

C(f) ≤
X
e∈E

ce(f
∗
e )f

∗
e +

X
e∈E

¡
ce(fe)−ce(f∗e )

¢
f∗e = C(f

∗)+
X
e∈E

¡
ce(fe)−ce(f∗e )

¢
f∗e

f∗e
³
ce(fe)−ce(f∗e )

´
≤ v(fe, ce)fece(fe), v(u, ce) =

1

uce(u)
maxx≥0{x(ce(u)−ce(x))}

v(ce) = supu≥0 v(u, ce) and v(D) = supce v(ce)

X
e∈E

¡
ce(fe)− ce(f∗e )

¢
f∗e ≤ v(D)

X
e∈E

ce(fe)fe ⇒ C(f) ≤ 1

1− v(D)C(f
∗)



Tightness

Assume that u units are to 
be routed from s to t.

At WE everybody goes up 
OPT minimizes:

Previous slide:

s t

c(x)

c(u)

Flow = k

Flow = u-k

PoA ≤
³
1− sup

ce∈D,u≥0
max
x≥0

{x(ce(u)− ce(x))}
uce(u)

´−1

kc(k) + (u− k)c(u)

PoA =
uc(u)

mink∈[0,v][(u− k)c(u) + kc(k)]
= max

k∈[0,v]

³
(1−k)+k c(k)

uc(u)

´−1
=
h
1− max

k∈[0,v]
k
¡c(u)− c(k)

uc(u)

¢i−1



Special cases

For linear latency functions:
For polynomial of degree d latency functions:

v(D) = 1
4 and PoA ≤ 4

3

1 unit is to be routed.
At WE everybody goes up
For                  OPT minimizes: 

It is                          and k = d

q
1
d+1

OPT = 1− d

(d+ 1)d+1/d

v(D) = d
(d+1)(d+1)/d

and PoA ≤
³
1− d

(d+1)(d+1)/d

´−1

s t

c(x)

c(1)

c(x) = xd

Flow = k

Flow = 1-kk · kd + (1− k)



Braess’ Paradox
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WE and OPT flows



Braess’ Paradox
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Removing the “middle” edge:
WE and OPT flows



Braess’ Paradox
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OPT and WE in the 
subnetwork

WE and OPT in the original network
Removing the “middle” edge:
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Braess’ Paradox
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OPT and WE in the 
subnetwork

WE and OPT in the original network
Removing the “middle” edge:

Is it possible to detect the Braess’ Paradox?

PoA=4/3

PoA=1



Reducing the PoA

The PoA can (could) be reduced:

– by detecting and excluding the Braess’ Paradox (next 
time)

– by controlling a fraction of cooperative  players 
(Stackelberg strategies, next time)

– by Taxing the edges of the network (today)
– with Coordination Mechanisms (or changing the rules 

of the game)



Reducing the PoA
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– by detecting and excluding the Braess’ Paradox (next 
time)

– by controlling a fraction of cooperative  players 
(Stackelberg strategies, next time)
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– with Coordination Mechanisms (or changing the rules 

of the game)



Tolls

Our scope is to set tolls that “transform” the system optimum to an 
equilibrium

Tolls are set on the edges: edge e gets a τe

Player using path p gets a delay cost                               and has to 
pay                    as tolls.

Player i has a sensitivity αi to latency. Her total cost is

Social Cost is not affected

τp =
X
e∈p

τe
cp(f) =

X
e∈p

ce(fe)

ailp(f) + τp



A “magic” LP program

Assume g is a (feasible) congestion that we want to enforce. 
Consider the following LP and its Dual:

(feasible) g is minimal if inequality 1 is tight

g is enforceable if there are tolls to enforce it on equilibrium.

minimize
P

i ai
P

p∈Pi cp(g)f
i
p

so that
∀e ∈ E : P

i

P
p∈P :e∈p f

i
p ≤ ge (1)

∀i : P
p∈Pi f

i
p = di (2)

∀i∀p ∈ Pi : f ip ≥ 0 (3)

maximize
P

i dizi −
P

e∈E gete
so that

∀i∀p ∈ Pi : zi −
P

e∈p te ≤ aicp(g) (i)

∀e ∈ E : te ≥ 0 (ii)



The Theorem

Theorem:
Proof:   

: there is a an optimal solution f, with a 
complementary optimal solution (t,z), for which 1 is 
tight :

⇒

minimize
P

i ai
P

p∈Pi cp(g)f
i
p

so that
∀e ∈ E : P

i

P
p∈P :e∈p f

i
p ≤ ge (1)

∀i : P
p∈Pi f

i
p = di (2)

∀i∀p ∈ Pi : f ip ≥ 0 (3)

maximize
P

i dizi −
P

e∈E gete
so that

∀i∀p ∈ Pi : zi −
P

e∈p te ≤ aicp(g) (i)

∀e ∈ E : te ≥ 0 (ii)

f ie > 0⇒ zi = aicp(g) +
P

e∈p te

g minimal ⇔ g enforceable



The Theorem

Theorem:
Proof:   

: consider eq. flow f and tolls τε. f is an equilibrium: 

f and (τ,z) are complementary (and feasible) and so 
they are both optimal.

g minimal ⇔ g enforceable

⇐

minimize
P

i ai
P

p∈Pi cp(g)f
i
p

so that
∀e ∈ E : P

i

P
p∈P :e∈p f

i
p ≤ ge (1)

∀i : P
p∈Pi f

i
p = di (2)

∀i∀p ∈ Pi : f ip ≥ 0 (3)

maximize
P

i dizi −
P

e∈E gete
so that

∀i∀p ∈ Pi : zi −
P

e∈p te ≤ aicp(g) (i)

∀e ∈ E : te ≥ 0 (ii)

f ie > 0⇒ zi := aicp(g) +
P

e∈p τe ≡ const



A minimal and optimal g? Where? 

g is called minimally feasible if:
– it is feasible and 
– reducing any ge (for any e) results to infeasibility

A minimally feasible g has optimal solutions for which 1 is tight

Let g be the optimal congestion, the one that we want to enforce.
Reduce the ge’ s, stopping whenever feasibility “stops”

g* is minimally feasible + optimal (                               )
X
e

ce(g
∗)g∗e ≤

X
e

ce(g)ge



Thank you!
(and Roughgarden)
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